An Output-Based Dynamic Order Re nement Strategy for Unsteady Aerodynamics

نویسنده

  • Krzysztof J. Fidkowski
چکیده

An output-based dynamic order re nement strategy is presented for unsteady simulations using the discontinuous Galerkin nite element method in space and time. A discrete unsteady adjoint solution provides scalar output error estimates and drives adaptive re nement of the space-time mesh. Space-time anisotropy is measured using projection of the adjoint onto semi-re ned spaces and is used to allocate degrees of freedom to additional time slabs or increased spatial order of individual space-time elements. The spatial re nement is dynamic in that the solution approximation order can change between time slabs. Results for the compressible Euler equations demonstrate bene ts of the dynamic order re nement strategy in terms of total degrees of freedom: at strict error tolerances, the savings approaches two orders of magnitude compared to uniform re nement, and a factor of two to three compared to output-based re nement with a static spatial mesh.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Output-Based Dynamic Order Refinement Strategy for Unsteady Aerodynamics

An output-based dynamic order re nement strategy is presented for unsteady simulations using the discontinuous Galerkin nite element method in space and time. A discrete unsteady adjoint solution provides scalar output error estimates and drives adaptive re nement of the space-time mesh. Space-time anisotropy is measured using projection of the adjoint onto semi-re ned spaces and is used to all...

متن کامل

Improved Mathematical Model for Helicopters Flight Dynamics Applications

The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...

متن کامل

An Unsteady Entropy Adjoint Approach for Adaptive Solution of the Shallow-Water Equations

This paper presents a novel approach to solution-based adaptation for unsteady discretizations of symmetrizable conservation laws. This approach is based on an extension of the entropy adjoint approach, which was previously introduced for steady-state simulations. Key to the approach is the interpretation of symmetrizing entropy variables as adjoint solutions for an output that states the entro...

متن کامل

Anisotropic Patch-Based Adaptive Mesh Re nement for Finite-Volume Method

We propose an anisotropic, patch-based adaptive mesh re nement algorithm for the nite-volume method solving partial di erential equations on Cartesian and mapped grids. For large ow gradients, such as shock waves and ame fronts, that are aligned with one grid direction, anisotropic re nement can provide a similar reduction in error using much less grid cells compared to isotropic re nement. To ...

متن کامل

ABSTRACT Title of dissertation: DEVELOPMENT OF A TIME-ACCURATE VISCOUS LAGRANGIAN VORTEX WAKE MODEL FOR WIND TURBINE APPLICATIONS

Title of dissertation: DEVELOPMENT OF A TIME-ACCURATE VISCOUS LAGRANGIAN VORTEX WAKE MODEL FOR WIND TURBINE APPLICATIONS Sandeep Gupta, Doctor of Philosophy, 2006 Dissertation directed by: Minta Martin Professor J. Gordon Leishman, Department of Aerospace Engineering A second-order accurate model has been developed and validated for modeling the unsteady aerodynamics of a wind turbine. The free...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011